Search results for " Elliptic"
showing 10 items of 85 documents
Renormalized solutions for degenerate elliptic–parabolic problems with nonlinear dynamical boundary conditions and L1-data
2008
Abstract We consider a degenerate elliptic–parabolic problem with nonlinear dynamical boundary conditions. Assuming L 1 -data, we prove existence and uniqueness in the framework of renormalized solutions. Particular instances of this problem appear in various phenomena with changes of phase like multiphase Stefan problems and in the weak formulation of the mathematical model of the so-called Hele–Shaw problem. Also, the problem with non-homogeneous Neumann boundary condition is included.
Morse-Smale index theorems for elliptic boundary deformation problems.
2012
AbstractMorse-type index theorems for self-adjoint elliptic second order boundary value problems arise as the second variation of an energy functional corresponding to some variational problem. The celebrated Morse index theorem establishes a precise relation between the Morse index of a geodesic (as critical point of the geodesic action functional) and the number of conjugate points along the curve. Generalization of this theorem to linear elliptic boundary value problems appeared since seventies. (See, for instance, Smale (1965) [12], Uhlenbeck (1973) [15] and Simons (1968) [11] among others.) The aim of this paper is to prove a Morse–Smale index theorem for a second order self-adjoint el…
Vector Bundles and Torsion Free Sheaves on Degenerations of Elliptic Curves
2006
In this paper we give a survey about the classification of vector bundles and torsion free sheaves on degenerations of elliptic curves. Coherent sheaves on singular curves of arithmetic genus one can be studied using the technique of matrix problems or via Fourier-Mukai transforms, both methods are discussed here. Moreover, we include new proofs of some classical results about vector bundles on elliptic curves.
Nonlinear elliptic equations having a gradient term with natural growth
2006
Abstract In this paper, we study a class of nonlinear elliptic Dirichlet problems whose simplest model example is: (1) { − Δ p u = g ( u ) | ∇ u | p + f , in Ω , u = 0 , on ∂ Ω . Here Ω is a bounded open set in R N ( N ⩾ 2 ), Δ p denotes the so-called p-Laplace operator ( p > 1 ) and g is a continuous real function. Given f ∈ L m ( Ω ) ( m > 1 ), we study under which growth conditions on g problem (1) admits a solution. If m ⩾ N / p , we prove that there exists a solution under assumption (3) (see below), and that it is bounded when m > N p ; while if 1 m N / p and g satisfies the condition (4) below, we prove the existence of an unbounded generalized solution. Note that no smallness condit…
Bounded solutions to the 1-Laplacian equation with a critical gradient term
2012
On elliptic equations involving the 1-Laplacian operator
2018
El objetivo de esta tesis doctoral es dar a conocer los resultados obtenidos sobre existencia, unicidad y regularidad de las soluciones de diferentes ecuaciones elípticas regidas por el operador 1-laplaciano. El primer capítulo está dedicado al estudio de la ecuación - div (Du/|Du|) + g(u) |Du| = f(x) en un subconjunto abierto y acotado U de R^N con frontera Lipschitz, con la condición de Dirichlet u=0 en la frontera, tomando una función f positiva y siendo g una función real, continua y positiva. Por un lado, obtenemos soluciones no acotadas cuando el dato f pertenece al espacio de Marcinkiewicz L^{N,\infty}(U), por lo que debemos introducir la definición apropiada para este tipo de soluci…
Indefinite integrals involving the incomplete elliptic integrals of the first and second kinds
2016
ABSTRACTA substantial number of indefinite integrals are presented for the incomplete elliptic integrals of the first and second kinds. The number of new results presented is about three times the total number to be found in the current literature. These integrals were obtained with a Lagrangian method based on the differential equations which these functions obey. All results have been checked numerically with Mathematica. Similar results for the incomplete elliptic integral of the third kind will be presented separately.
Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method
2017
For the homogeneous Dirichlet problem involving a system of equations driven by \begin{document}$(p,q)$\end{document} -Laplacian operators and general gradient dependence we prove the existence of solutions in the ordered rectangle determined by a subsolution-supersolution. This extends the preceding results based on the method of subsolution-supersolution for systems of elliptic equations. Positive and negative solutions are obtained.
Symmetrization for singular semilinear elliptic equations
2012
In this paper, we prove some comparison results for the solution to a Dirichlet problem associated with a singular elliptic equation and we study how the summability of such a solution varies depending on the summability of the datum f. © 2012 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.
A Parametric Dirichlet Problem for Systems of Quasilinear Elliptic Equations With Gradient Dependence
2016
The aim of this article is to study the Dirichlet boundary value problem for systems of equations involving the (pi, qi) -Laplacian operators and parameters μi≥0 (i = 1,2) in the principal part. Another main point is that the nonlinearities in the reaction terms are allowed to depend on both the solution and its gradient. We prove results ensuring existence, uniqueness, and asymptotic behavior with respect to the parameters.